Abstract
For functions on a metric measure space, we introduce a notion of "gradient at a given scale''. This allows us to define Sobolev inequalities at a given scale. We prove that satisfying a Sobolev inequality at a large enough scale is invariant under large-scale equivalence, a metric-measure version of coarse equivalence. We prove that for a Riemmanian manifold satisfying a local Poincaré inequality, our notion of Sobolev inequalities at large scale is equivalent to its classical version. These notions provide a natural and efficient point of view to study the relations between the large time on-diagonal behavior of random walks and the isoperimetry of the space. Specializing our main result to locally compact groups, we obtain that the L^p -isoperimetric profile, for every 1\leq p\leq \infty is invariant under quasi-isometry between amenable unimodular compactly generated locally compact groups. A qualitative application of this new approach is a very general characterization of the existence of a spectral gap on a quasi-transitive measure space X , providing a natural point of view to understand this phenomenon.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have