Abstract

Molybdenum disulfide (MoS2) serves as the representative transition metal dichalcogenide material, showing promise for diverse applications owing to its outstanding properties. Extensive research has been conducted on the growth of large-scale MoS2 films using chemical vapor deposition (CVD) with seeding accelerators for various device applications. In this study, we investigated the growth of large-scale MoS2 films for potential applications, in which our approach utilized CVD with a homogeneous nanosheet promoter (MoS2 flakes) and effectively minimized residue creation. Optical and structural analyses confirmed the successful synthesis of a large-scale MoS2 layer. Moreover, the decoration of metallic nanoparticles on the MoS2 surface was employed to enhance the functionalities of application devices such as optical sensors and gas sensors. The capability of MoS2 to act as a nucleation site for nanoparticles during synthesis offered an intriguing pathway for augmenting the attachment and performance of nanoparticles on the MoS2 surface. The photodetector, integrating a hybrid MoS2 layer and Cu nanoparticles, exhibited superior photodetection properties, attributed to the increased excitons at the interface between the metal electrodes and MoS2 films. Furthermore, in order to enhance the characteristics of the gas sensor, Pd nanoparticles were incorporated during the synthesis of MoS2 layers. This dynamic interface between Pd particles and MoS2 films presents an opportunity to explore novel materials with enhanced catalytic properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call