Abstract
Abduction is inference to the best explanation. Abduction has long been studied intensively in a wide range of contexts, from artificial intelligence research to cognitive science. While recent advances in large-scale knowledge acquisition warrant applying abduction with large knowledge bases to real-life problems, as of yet no existing approach to abduction has achieved both the efficiency and formal expressiveness necessary to be a practical solution for large-scale reasoning on real-life problems. The contributions of our work are the following: (i) we reformulate abduction as an Integer Linear Programming (ILP) optimization problem, providing full support for first-order predicate logic (FOPL); (ii) we employ Cutting Plane Inference, which is an iterative optimization strategy developed in Operations Research for making abductive reasoning in full-fledged FOPL tractable, showing its efficiency on a real-life dataset; (iii) the abductive inference engine presented in this paper is made publicly available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.