Abstract
Abduction is desirable for many natural language processing (NLP) tasks. While recent advances in large-scale knowledge acquisition warrant applying abduction with large knowledge bases to real-life NLP problems, as of yet, no existing approach to abduction has achieved the efficiency necessary to be a practical solution for largescale reasoning on real-life problems. In this paper, we propose an efficient solution for large-scale abduction. The contributions of our study are as follows: (i) we propose an efficient method of cost-based abduction in first-order predicate logic that avoids computationally expensive grounding procedures; (ii) we formulate the bestexplanation search problem as an integer linear programming optimization problem, making our approach extensible; (iii) we show how cutting plane inference, which is an iterative optimization strategy developed in operations research, can be applied to make abduction in first-order logic tractable; and (iv) the abductive inference engine presented in this paper is made publicly available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.