Abstract
AbstractWe use probabilistic methods to study properties of mean-field models, which arise as large-scale limits of certain particle systems with mean-field interaction. The underlying particle system is such that n particles move forward on the real line. Specifically, each particle ‘jumps forward’ at some time points, with the instantaneous rate of jumps given by a decreasing function of the particle’s location quantile within the overall distribution of particle locations. A mean-field model describes the evolution of the particles’ distribution when n is large. It is essentially a solution to an integro-differential equation within a certain class. Our main results concern the existence and uniqueness of—and attraction to—mean-field models which are traveling waves, under general conditions on the jump-rate function and the jump-size distribution.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.