Abstract

Abstract In Chung–Lu random graphs, a classic model for real-world networks, each vertex is equipped with a weight drawn from a power-law distribution, and two vertices form an edge independently with probability proportional to the product of their weights. Chung–Lu graphs have average distance $O(\log\log n)$ and thus reproduce the small-world phenomenon, a key property of real-world networks. Modern, more realistic variants of this model also equip each vertex with a random position in a specific underlying geometry. The edge probability of two vertices then depends, say, inversely polynomially on their distance. In this paper we study a generic augmented version of Chung–Lu random graphs. We analyze a model where the edge probability of two vertices can depend arbitrarily on their positions, as long as the marginal probability of forming an edge (for two vertices with fixed weights, one fixed position, and one random position) is as in a Chung–Lu random graph. The resulting class contains Chung–Lu random graphs, hyperbolic random graphs, and geometric inhomogeneous random graphs as special cases. Our main result is that every random graph model in this general class has the same average distance as a Chung–Lu random graph, up to a factor of $1+o(1)$ . This shows in particular that specific choices, such as taking the underlying geometry to be Euclidean, do not significantly influence the average distance. The proof also shows that every random graph model in our class has a giant component and polylogarithmic diameter with high probability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.