Abstract

The present study investigated whether larger splenic emptying augments faster excess post-exercise O2 consumption (EPOC) following aerobic exercise cessation. Fifteen healthy participants (age 24 ± 4, 47% women) completed 3 laboratory visits at least 48-h apart. After obtaining medical clearance and familiarizing themselves with the test, they performed a ramp-incremental test in the supine position until task failure. At their final visit, they completed three step-transition tests from 20 W to a moderate-intensity power output (PO), equivalent to [Formula: see text]O2 at 90% gas exchange threshold, where data on metabolic, cardiovascular, and splenic responses were recorded simultaneously. After step-transition test cessation, EPOCfast was recorded, and the first 10min of the recovery period was used for further analysis. Blood samples were collected before and immediately after the end of exercise. In response to moderate-intensity supine cycling ([Formula: see text]O2 = ~ 2.1 L·min-1), a decrease in spleen volume of ~ 35% (p = 0.001) was observed, resulting in a transient increase in red cell count of ~ 3-4% (p = 0.001) in mixed venous blood. In parallel, mean blood pressure, heart rate, and stroke volume increased by 30-100%, respectively. During recovery, mean τ[Formula: see text]O2 was 45 ± 18s, the amplitude was 2.4 ± 0.5 L·min-1, and EPOCfast was 1.69 L·O2. Significant correlations were observed between the percent change in spleen volume and (i) EPOCfast (r = - 0.657, p = 0.008) and (ii) τ[Formula: see text]O2 (r = - 0.619, p = 0.008), but not between the change in spleen volume and (iii) [Formula: see text]O2 peak (r = 0.435, p = 0.105). Apparently, during supine cycling, individuals with larger spleen emptying tend to have slower [Formula: see text] O2 recovery kinetics and a greater EPOCfast.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call