Abstract

Graphene was discovered less than five years ago and proved the existence of pure two-dimensional systems, thought physically impossible in the past. It appeared very quickly that this exceptionalmaterial showedmany outstanding properties. Since electrons and holes in graphene have potential for high carrier mobilities, this novel material has become an exciting new playground for physicists; properties such as the halfinteger quantum Hall effect at room temperature, spin transport, high elasticity, electromechanicalmodulation, and ferromagnetism all contribute to the fame of graphene. Since the first experiments conducted five years ago on micromechanically cleaved graphite (the renowned but lowyield adhesive tape method), the growing appeal of graphene’s properties has focused much of the research attention towards the conception of a reliable method for large-scale production. Recent advances using chemical vapor deposition and successful transfer of the prepared films to arbitrary substrates brought impressive results in terms of crystalline quality of the layers and consequent electrical and mechanical properties. Notwithstanding these results, truly controllable singleor multilayer large-scale deposition is still a pressing issue and a method for depositing high-quality graphene at variable coverage on an arbitrary surface is not yet available. Moreover, for practical application or simply for fundamental research purposes, good adhesion of graphene to the substrate is of great importance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call