Abstract

The nonlinear Schrodinger (NLS) equation describes the spatial–temporal evolution of the complex amplitude of wave groups in beams and pulses in both second and third order nonlinear material. In this paper we investigate in detail the wave group that has the exact two-soliton solution as amplitude, and show that large variations in the amplitude appear to form a pattern that, at the peak interaction, resembles quite well the linear superposition. The complexity of the phenomenon is a combination of nonlinear effects and linear interference of the carrier waves: the characteristic parameter is the quotient of wave amplitude and frequency difference of the carrier waves, which is also proportional to the quotient of the modulation period of the carrier waves during interaction and the interaction period of the soliton envelopes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.