Abstract
The observation of a significant temperature-dependent variation in the I-V characteristics of tunneling devices is often interpreted as a signature of a trap-assisted-tunneling dominated current. In this letter, we use a ballistic 2D quantum-mechanical simulator, calibrated using the measured temperature-dependent I-V characteristics of Esaki diodes, to demonstrate that the temperature dependence of band-to-band tunneling (BTBT) current can vary significantly in both Esaki diodes and tunnel FETs. The variation of BTBT current with temperature is impacted by doping concentration, gate voltage, possible presence of a highly-doped pocket at the tunnel junction, and material.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.