Abstract

Two-dimensional (2D) van der Waals (vdW) materials provide the possibility of realizing heterostructures with coveted properties. Here, we report a theoretical investigation of the vdW magnetic tunnel junction (MTJ) based on VSe2/MoS2 heterojunction, where the VSe2 monolayer acts as a ferromagnet with room-temperature ferromagnetism. We propose the concept of spin-orbit torque (SOT) vdW MTJ with reliable reading and efficient writing operations. The nonequilibrium study reveals a large tunneling magnetoresistance of 846% at 300 K, identifying significantly its parallel and antiparallel states. Thanks to the strong spin Hall conductivity of MoS2, SOT is promising for the magnetization switching of VSe2 free layer. Quantum-well states come into being and resonances appear in MTJ, suggesting that the voltage control can adjust transport properties effectively. The SOT vdW MTJ based on VSe2/MoS2 provides desirable performance and experimental feasibility, offering new opportunities for 2D spintronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.