Abstract

Organic crystals are likely to have a large degree of structural relaxation near their surfaces because of the weak inter-molecular interactions. The design of organic field-effect transistors requires a detailed knowledge of the surface relaxation as the carriers usually transfer within the first few molecular layers at the semiconductor surfaces, and their transport properties reflect the structural changes through the transfer integral. Here, we report the direct observation of the surface relaxation of an organic semiconductor, a tetracene single crystal, by means of X-ray crystal truncation rod scattering measurements. A significant degree of surface relaxation is observed, taking place only in the first monolayer at the semiconductor surface. First principles calculations show that the resultant transfer integrals are completely different between the bulk and surface of the semiconductor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.