Abstract

The authors report on monolithic, light-emitting vertical microcavities based on an organic semiconductor single crystal. The devices are realized by reactive electron-beam deposition of dielectric mirrors and growth of tetracene crystals by physical vapor transport. The microcavities exhibit optical cavity modes in the visible range (550–580nm) with full width at half maximum down to 2–3nm, corresponding to a Q factor of about 200, and polarization-induced modal splitting up to 20meV. These results open perspectives for the realization of polarized-emitting optoelectronic devices based on organic crystals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.