Abstract
Thin-film antiferromagnets (AFs) with Rashba spin-orbit coupling are theoretically investigated. We demonstrate that the relativistic Dzyaloshinskii-Moriya interaction (DMI) produces a large surface magnetization and a boundary-driven twist state in the antiferromagnetic N\' eel vector. We predict a magnetization on the order of $2.3\cdot 10^4$~A/m, which is comparable to the magnetization of ferromagnetic semiconductors. Importantly, the magnetization is characterized by ultra-fast terahertz dynamics and provides new approaches for efficiently probing and controlling the spin dynamics of AFs as well as detecting the antiferromagnetic DMI. Notably, the magnetization does not lead to any stray magnetic fields except at corners where weak magnetic monopole fields appear.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.