Abstract
The purpose of this study is to obtain insight into surface effect ship (SES) endurance without reliance on historical data as a function of geometry, displacement, and technology level. First-principle models of the resistance, structures, and propulsion system are developed and integrated to predict large SES endurance and to suggest the directions that future large SESs will take. It is found that large SESs are dominated by structural weight, which indicates the need for advanced materials and complex structures, and that advanced propulsion cycles can increase endurance by up to 33%. SES endurance is shown to be a nonlinear discontinuous function of geometry, displacement, and technology level that cannot be predicted by simplified models or assumptions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have