Abstract
The spin Hall efficiency (ξ) is a crucial parameter that evaluates the charge-to-spin conversion capability of a material, and thus materials with higher ξ are highly desirable in spin-orbittorque (SOT) devices. Recent studies have highlighted the use of ferromagnetic materials as robust spin sources, paving the way for the development of more efficient SOT devices. To accelerate this innovation, it is essential to pursue ferromagnetic materials of high ξ. Here the experimental observation of a large spin Hall efficiency is reported in ferromagnetic Heusler alloy Co2MnAl (CMA)-based magnetic trilayers. Utilizing the current-induced hysteresis loop shift technique, the spin Hall efficiency is determined to be 0.077 for the B2-phase and 0.029 for the disordered CMA. Notably, magnetization switching both with and without the application of an external auxiliary magnetic field were achieved in these trilayers. The enhancement of ξ is attributed to the formation of chemical ordering in CMA. These findings provide new avenues for the development of ferromagnet-based SOT devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.