Abstract

We establish a general large sieve inequality with sparse sets $\mathcal{S}$ of moduli in the Gaussian integers which are in a sense well-distributed in arithmetic progressions. This extends earlier work of S. Baier on the large sieve with sparse sets of moduli. We then use this result to obtain large sieve bounds for the cases when $\mathcal{S}$ consists of squares of Gaussian integers and of Gaussian primes. Our bound for the case of square moduli improves a recent result by the authors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.