Abstract

Identifying the observables that warn of volcanic eruptions is a major challenge in natural hazard management. A potentially important observable is the release of heat through volcano surfaces, which represents a major energy source at quiescent volcanoes. However, it remains unclear whether surface heat emissions respond to pre-eruptive processes and vary before eruption. Here we show through a statistical analysis of satellite-based long-wavelength (10.780–11.280 μm) infrared data that the last magmatic and phreatic eruptions of five different volcanoes were preceded by subtle but significant long-term (years), large-scale (tens of square kilometres) increases in their radiant heat flux (up to ~1 °C in median radiant temperature). Large-scale thermal unrest is detected even before eruptions that were not anticipated from other volcano monitoring methods, such as the 2014 phreatic eruption of Ontake (Japan) and the 2015 magmatic eruption of Calbuco (Chile). We attribute large-scale thermal unrest to the enhancement of underground hydrothermal activity, and suggest that such analysis of satellite-based infrared observations can improve constraints on the thermal budget of volcanoes, early detection of pre-eruptive conditions and assessments of volcanic alert levels. Large-scale radiant heat flux increased in the years prior to eruptions at five volcanoes, probably due to enhanced underground hydrothermal activity, according to an analysis of satellite infrared data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.