Abstract
We discuss the dark-matter detection rates for the elastic and inelastic scattering of the lightest supersymmetric particle (LSP) off nuclei. For this we use an easily accessible formalism where the underlying nuclear physics is condensed in structure coefficients multiplying the key parameters of supersymmetric theories. In this work we compute these coefficients for the stable iodine, xenon, and cesium nuclei by application of the nuclear shell model in a model space involving the 2s, 1d, 0g 7/2 , and 0h 11/2 single-particle orbitals. As an interaction we use the renormalized Bonn-CD G matrix. By using fitted nuclear gyromagnetic factors we have successfully reproduced the relevant spectroscopic data on magnetic moments and M 1 decays in the discussed nuclei.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have