Abstract

The contamination of water with hydrocarbons resulting from oil exploration and production highlights the need for efficient and environmentally friendly technology to mitigate this form of water pollution. Floating treatment wetlands are a sustainable approach for remediating contaminated water. In this large-scale study, we used four different plants, Phragmites australis, Typha domingensis, Leptochloa fusca, and Brachiaria mutica, to vegetate a floating mat with an area of 3058 m2 made from locally sourced materials. The floating treatment wetlands constructed in this manner were used to treat an oil-contaminated water stabilization pit resulting from oil and gas exploration activities in District Chakwal, Pakistan. The plants and the water in the pit were inoculated with a consortium of 10 different hydrocarbon-degrading bacteria. The application of floating treatment wetlands to the pit reduced chemical oxygen demand, biochemical oxygen demand, total dissolved solids, hydrocarbon content, and heavy metals by 97.4%, 98.9%, 82.4%, 99.1%, and 80%, respectively, within 18 months. All plants survived and showed growth, but maximum development and biomass production were exhibited by P. australis. Moreover, the bacteria used for inoculation were able to persist and show degradation activity in the water as well as in the rhizoplane, roots, and shoots of the plants. We conclude that floating treatment wetlands can be applied to oil-contaminated water stabilization pits for affordable and effective water treatment.

Highlights

  • Crude oil is the world’s largest non-renewable energy resource, accounting for about 33% of the total consumed energy

  • The worldwide demand for oil is expected to keep rising in the coming years, which will potentially increase the generation of oil-contaminated water

  • Crude oil consists of various proportions of different hydrocarbons, such as alkanes, aromatics, and polycyclic aromatic hydrocarbons, as well as non-hydrocarbons, including sulfur, nitrogen, and trace metals, nickel, iron, and copper.[5,6]

Read more

Summary

Introduction

Crude oil is the world’s largest non-renewable energy resource, accounting for about 33% of the total consumed energy. The analyses of organic and inorganic contaminants throughout the experimental period of 18 months provided deep insights into the application of FTWs vegetated with the four different plant species (Typha domingensis, Phragmites australis, Leptochloa fusca, and Brachiaria mutica) at the large scale (Table 2 and Fig. 1).

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.