Abstract

Floating treatment wetland (FTW) is an innovative, cost effective and environmentally friendly option for wastewater treatment. The dyes in textile wastewater degrade water quality and pose harmful effects to living organisms. In this study, FTWs, vegetated with Phragmites australis and augmented with specific bacteria, were used to treat dye-enriched synthetic effluent. Three different types of textile wastewater were synthesized by adding three different dyes in tap water separately. The FTWs were augmented with three pollutants degrading and plant growth promoting bacterial strains (i.e., Acinetobacter junii strain NT-15, Rhodococcus sp. strain NT-39, and Pseudomonas indoloxydans strain NT-38). The water samples were analyzed for pH, electrical conductivity (EC), total dissolved solid (TDS), total suspended solids (TSS), chemical oxygen demand (COD), biological oxygen demand (BOD), color, bacterial survival and heavy metals (Cr, Ni, Mn, Zn, Pb and Fe). The results indicated that the FTWs removed pollutants and color from the treated water; however, the inoculated bacteria in combination with plants further enhanced the remediation potential of floating wetlands. In FTWs with P. australis and augmented with bacterial inoculum, pH, EC, TDS, TSS, COD, BOD and color of dyes were significantly reduced as compared to only vegetated and non-vegetated floating treatment wetlands without bacterial inoculation. Similarly, the FTWs application successfully removed the heavy metal from the treated dye-enriched wastewater, predominately by FTWs inoculated with bacterial strains. The bacterial augmented vegetated FTWs, in the case of dye 1, reduced the concentration of Cu, Ni, Zn, Fe, Mn and Pb by 75%, 73.3%, 86.9%, 75%, 70% and 76.7%, respectively. Similarly, the bacterial inoculation to plants in the case of dye 2 achieved 77.5% (Cu), 73.3% (Ni), 83.3% (Zn), 77.5% (Fe), 66.7% (Mn) and 73.3% (Pb) removal rates. Likewise in the case of dye 3, which was treated with plants and inoculated bacteria, the metals removal rates were 77.5%, 73.3%, 89.7%, 81.0%, 70% and 65.5% for Cu, Ni, Zn, Fe, Mn and Pb, respectively. The inoculated bacteria showed persistence in water, in roots and in shoots of the inoculated plants. The bacteria also reduced the dye-induced toxicity and promoted plant growth for all three dyes. The overall results suggested that FTW could be a promising technology for the treatment of dye-enriched textile effluent. Further research is needed in this regard before making it commercially applicable.

Highlights

  • Industrialization is a main source of water pollution

  • The present study evaluated the potential of P. australis in Floating treatment wetland (FTW) along with three inoculated bacterial strains to remove dye as well as organic and inorganic pollutants from dye-enriched water

  • The results clearly indicated that P. australis along with inoculated strains have a great potential to remove different types of dyes and pollutants, including potentially toxic metals, from textile effluent

Read more

Summary

Introduction

Industrialization is a main source of water pollution. Almost 17% to 20% of industrial water pollution is due to textile dyeing and finishing treatments given to fabrics [3]. Many dyes are derived from heavy metals such as copper (Cu), lead (Pb) and cadmium (Cd). The uses of these metal-complex dyes is a source of heavy metals contamination in water bodies [4]. Dyes block the sunlight in water bodies, stopping photosynthesis [5]. These textile contaminants are carcinogenic and mutagenic for all life forms [3]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call