Abstract

The spatial pattern of and the transition rates between forest ecological states were inferred for °260 000 pixel—sized (3600 m2) landscape units using stallite remote sensing. Transition rates were estimated from 1973 to 1983 Landsat images of the study area, classified into ecological states associated with forest succession. The effects of classification error on transition rate estimates were modeled and error adjustments made. Classification of the 1973 and 1983 Landsat images of the 900 km2 study region required a relatively small set of ground—observed and photo—interpreted plots in 1983, with a total area of just 1.62 km2. An innovative technique for correcting multiyear Landsat images for between—image differences in atmospheric effects and sensor calibration, permitted classification of the 1973 Landsat image using 1983 ground observations. Given current Landsat data, and ground observations in one year, this technique would permit monitoring of forest succession and dynamics for nearly a 20—yr period. Results of applying these techniques to a forest ecosystem showed that during the 10—yr observation period it was patchy and dynamic. For both a wilderness and a nonwilderness area in the study region, sizeable values of transition rates were observed and over half of the landscape units were observed to change state: however, a Markov analysis, using the observed transition probabilities, suggests that at the regional level neither the wilderness nor the nonwilderness areal proportions of ecological states are undergoing rapid change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call