Abstract
This paper presents a new method based on the Smart Energy System concept to link the water infrastructure and the energy system of an island. The principal aim of this study is to determine whether this new method can increase the contribution of renewables (wind power and photovoltaic) to the primary energy supply of the island. The method considers water production and treatment systems as flexible loads and explores a wide range of possible water supply infrastructures and PV/wind power combinations in the search for an optimal energy-water configuration. The final optimal solution is based on a balance between energy fuel needs and energy excesses, CO2 emissions, oil consumption, minimization of total annual costs and maximization of the renewable contribution. The proposed method increased the contribution of renewables from 5.14% to 24.6%. This corresponds to, on average, over 35% of the hourly electricity demand throughout 2018 being covered by renewables, against the current 6.6%. The study reveals that wind technology integration is of fundamental importance for renewable exploitation in insular water-energy systems, with wind energy contributing more than 70% of the renewable participation in this case study.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have