Abstract
Gene therapy and viral vaccine are becoming attractive therapeutic options for the treatment of different malignant diseases. Viral vector productions are often using static culture vessels and small volume stainless steel bioreactors (SSB). However, the yield of each vessel can be relatively low and multiple vessels often need to be operated simultaneously. This significantly increases labor intensity, production costs, contamination risks, and limits its ability to be scaled up, thus, creating challenges to meet the quantities required once the gene therapy or viral vaccine medicine goes into clinical phases or to market. Single-use bioreactor combining with microcarrier provides a good option for viral vector and vaccine production. The goal of the present studies was to develop the microcarrier bead-to-bead expansion and transfer process for HEK293T cells and Vero cells and scale-up the cultures to 50–200 l single-use bioreactors. Following microcarrier bead-to-bead transfer, the peak cell concentration of HEK293T cells reached 1.5 × 106 cells/ml in XDR-50 bioreactor, whereas Vero cells reached 3.1 × 106 cells/ml and 3.3 × 106 cells/ml in XDR-50 bioreactor and XDR-200 bioreactor, respectively. The average growth rates reached 0.61–0.68/day. The successful microcarrier-based scaleup of these two cell lines in single-use bioreactors demonstrates potential large-scale production capabilities of viral vaccine and vector for current and future vaccines and gene therapy.
Highlights
Gene therapies and viral vaccines are becoming another research hotspot after antibody-based therapeutics, both being widely used for the treatments of a vast array of diseases, including genetic diseases, cancers, cardiovascular diseases, metabolic diseases, and infectious diseases, etc. (Buzhor et al 2014; Draper and Heeney 2010; Wang and Gao 2014)
For Vero cells, the highest cell concentration was reached to 25.6 ± 1.1 × 104 cells/cm2 in the DMEM + FBS group, which increased 50.1% compared to the MEM + FBS group and 89.6% of the M199 + FBS group (Fig. 2b)
The results showed that the Vero cell expansion paths were feasible, and the cells combining with microcarriers can grow well in Xcellerex disposable reactor (XDR)-50 and XDR-200 bioreactors
Summary
Gene therapies and viral vaccines are becoming another research hotspot after antibody-based therapeutics, both being widely used for the treatments of a vast array of diseases, including genetic diseases, cancers, cardiovascular diseases, metabolic diseases, and infectious diseases, etc. (Buzhor et al 2014; Draper and Heeney 2010; Wang and Gao 2014). Gene therapies and viral vaccines are becoming another research hotspot after antibody-based therapeutics, both being widely used for the treatments of a vast array of diseases, including genetic diseases, cancers, cardiovascular diseases, metabolic diseases, and infectious diseases, etc. Thousands of gene therapy projects and viral vaccine projects are in Investigation New Drug phases or clinical trial phases. In these projects, the preparation of viruses through HEK293T cells and static multilayer flasks, may still meet the demand (Levine et al 2017), but as the projects enter clinical phase III or get approval into the market, large-scale production of viruses could become a limiting factor in the industrialization of gene therapy and viral vaccine (van der Loo and Wright 2016). The establishment of large-scale HEK293T cell culture process for virus production has become very urgent
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have