Abstract
The covariance matrix adaptation evolution strategy (CMA-ES) is a powerful evolutionary algorithm for single-objective real-valued optimization. However, the time and space complexity may preclude its use in high-dimensional decision space. Recent studies suggest that putting sparse or low-rank constraints on the structure of the covariance matrix can improve the efficiency of CMA-ES in handling large-scale problems. Following this idea, this paper proposes a search direction adaptation evolution strategy (SDA-ES) which achieves linear time and space complexity. SDA-ES models the covariance matrix with an identity matrix and multiple search directions, and uses a heuristic to update the search directions in a way similar to the principal component analysis. We also generalize the traditional 1/5th success rule to adapt the mutation strength which exhibits the derandomization property. Numerical comparisons with nine state-of-the-art algorithms are carried out on 31 test problems. The experimental results have shown that SDA-ES is invariant under search-space rotational transformations, and is scalable with respect to the number of variables. It also achieves competitive performance on generic black-box problems, demonstrating its effectiveness in keeping a good tradeoff between solution quality and computational efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.