Abstract

AbstractThis paper proposes a simple modification of the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) for high dimensional objective functions, reducing the internal time and space complexity from quadratic to linear. The covariance matrix is constrained to be diagonal and the resulting algorithm, sep-CMA-ES, samples each coordinate independently. Because the model complexity is reduced, the learning rate for the covariance matrix can be increased. Consequently, on essentially separable functions, sep-CMA-ES significantly outperforms CMA-ES. For dimensions larger than a hundred, even on the non-separable Rosenbrock function, the sep-CMA-ES needs fewer function evaluations than CMA-ES.KeywordsCovariance MatrixFunction EvaluationLearning RateSpace ComplexityTarget FunctionThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.