Abstract
The ability to estimate the current mood states of web users has considerable potential for realizing user-centric opportune services in pervasive computing. However, it is difficult to determine the data type used for such estimation and collect the ground truth of such mood states. Therefore, we built a model to estimate the mood states from search-query data in an easy-to-collect and non-invasive manner. Then, we built a model to estimate mood states from mobile sensor data as another estimation model and supplemented its output to the ground-truth label of the model estimated from search queries. This novel two-step model building contributed to boosting the performance of estimating the mood states of web users. Our system was also deployed in the commercial stack, and large-scale data analysis with >11 million users was conducted. We proposed a nationwide mood score, which bundles the mood values of users across the country. It shows the daily and weekly rhythm of people's moods and explains the ups and downs of moods during the COVID-19 pandemic, which is inversely synchronized to the number of new COVID-19 cases. It detects big news that simultaneously affects the mood states of many users, even under fine-grained time resolution, such as the order of hours. In addition, we identified a certain class of advertisements that indicated a clear tendency in the mood of the users who clicked such advertisements.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.