Abstract

The automatic extraction of published relationships between molecular entities has important applications in many biomedical fields, ranging from Systems Biology to Personalized Medicine. Existing works focused on extracting relationships described in single articles or in single sentences. However, a single record is rarely sufficient to judge upon the biological correctness of a relation, as experimental evidence might be weak or only valid in a certain context. Furthermore, statements may be more speculative than confirmative, and different articles often contradict each other. Experts therefore always take the complete literature into account to take a reliable decision upon a relationship. It is an open research question how to do this effectively in an automatic manner. We propose two novel relation extraction approaches which use recent representation learning techniques to create comprehensive models of biomedical entities or entity-pairs, respectively. These representations are learned by considering all publications from PubMed mentioning an entity or a pair. They are used as input for a neural network for classifying relations globally, i.e. the derived predictions are corpus-based, not sentence- or article based as in prior art. Experiments on the extraction of mutation-disease, drug-disease and drug-drug relationships show that the learned embeddings indeed capture semantic information of the entities under study and outperform traditional methods by 4-29% regarding F1 score. Source codes are available at: https://github.com/mariosaenger/bio-re-with-entity-embeddings. Supplementary data are available at Bioinformatics online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.