Abstract

Relating metabolite and enzyme abundances to metabolic fluxes requires reaction kinetics, core elements of dynamic and enzyme cost models. However, kinetic parameters have been measured only for a fraction of all known enzymes, and the reliability of the available values is unknown. The ENzyme KInetics Estimator (ENKIE) uses Bayesian Multilevel Models to predict value and uncertainty of KM and kcat parameters. Our models use five categorical predictors and achieve prediction performances comparable to deep learning approaches that use sequence and structure information. They provide calibrated uncertainty predictions and interpretable insights into the main sources of uncertainty. We expect our tool to simplify the construction of priors for Bayesian kinetic models of metabolism. Code and Python package are available at https://gitlab.com/csb.ethz/enkie and https://pypi.org/project/enkie/. Supplementary data are available at Bioinformatics online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.