Abstract

State-of-the-art thermal neutron scintillation detectors rely on rare isotopes for neutron capture, lack stability and scalability of solid-state scintillation devices, and poorly discriminate between the neutron and gamma rays. Our boron nitride (BN) - CsPbBr3 perovskite nanocomposite aerogel scintillator enables discriminative detection of thermal neutrons, features the largest known size (9cm across), the lowest density (0.17g/cm3 ) among the existing scintillation materials, high BN (50%) perovskite (1%) contents, high optical transparency (85%), and excellent radiation stability. The new detection mechanism relies on thermal neutron capture by 10 B and effective energy transfer from the charged particles to visible-range scintillation photons between the densely packed BN and CsPbBr3 nanocrystals. Low density minimizes the gamma ray response. The neutrons and gamma rays are discriminated by complete decoupling of the respective single pulses in time and intensity. These outcomes open new avenues for neutron detection in resource exploration, clean energy, environmental, aerospace, and homeland security applications. This article is protected by copyright. All rights reserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.