Abstract

In this paper we present the development and performance of a three-dimensional phase field dislocation dynamics (3D PFDD) model for large-scale dislocation-mediated plastic deformation on high-performance architectures. Through the parallelization of this algorithm, efficient run times can be achieved for large-scale simulations. The algorithm’s performance is analyzed over several computing platforms including Infiniband, GigE, and proprietary (SiCortex) interconnects. Scalability is considered on data sets up to 2,0483, along with the efficiency on up to 2,048 processors. Results show that scalability improves as the size of the data set increases and that the overall performance is best on the Infiniband interconnect. In addition, a performance model has been developed to predict run times and efficiency on large sets of data running on multiple processors. This performance analysis shows that this parallel code is capable of harnessing the greater computer power available from petascale systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.