Abstract
This article investigates the large sample interval mapping method for genetic trait loci (GTL) in a finite non-linear regression mixture model. The general model includes most commonly used kernel functions, such as exponential family mixture, logistic regression mixture and generalized linear mixture models, as special cases. The populations derived from either the backcross or intercross design are considered. In particular, unlike all existing results in the literature in the finite mixture models, the large sample results presented in this paper do not require the boundness condition on the parametric space. Therefore, the large sample theory presented in this article possesses general applicability to the interval mapping method of GTL in genetic research. The limiting null distribution of the likelihood ratio test statistics can be utilized easily to determine the threshold values or p-values required in the interval mapping. The limiting distribution is proved to be free of the parameter values of null model and free of the choice of a kernel function. Extension to the multiple marker interval GTL detection is also discussed. Simulation study results show favorable performance of the asymptotic procedure when sample sizes are moderate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.