Abstract

A large payload quantum steganography protocol based on cavity quantum electrodynamics (QED) is presented in this paper, which effectively uses the evolutionary law of atoms in cavity QED. The protocol builds up a hidden channel to transmit secret messages using entanglement swapping between one GHZ state and one Bell state in cavity QED together with the Hadamard operation. The quantum steganography protocol is insensitive to cavity decay and the thermal field. The capacity, imperceptibility and security against eavesdropping are analyzed in detail in the protocol. It turns out that the protocol not only has good imperceptibility but also possesses good security against eavesdropping. In addition, its capacity for a hidden channel achieves five bits, larger than most of the previous quantum steganography protocols.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.