Abstract

BackgroundMolecular markers for prostate cancer (PCa) are required to improve the early definition of patient outcomes. Atypically large extracellular vesicles (EVs), referred as “Large Oncosomes” (LO), have been identified in highly migratory and invasive PCa cells. We recently developed and characterized the DU145R80 subline, selected from parental DU145 cells as resistant to inhibitors of mevalonate pathway. DU145R80 showed different proteomic profile compared to parental DU145 cells, along with altered cytoskeleton dynamics and a more aggressive phenotype.MethodsImmunofluorescence staining and western blotting were used to identify blebbing and EVs protein cargo. EVs, purified by gradient ultra-centrifugations, were analyzed by tunable resistive pulse sensing and multi-parametric flow cytometry approach coupled with high-resolution imaging technologies. LO functional effects were tested in vitro by adhesion and invasion assays and in vivo xenograft model in nude mice. Xenograft and patient tumor tissues were analyzed by immunohistochemistry.ResultsWe found spontaneous blebbing and increased shedding of LO from DU145R80 compared to DU145 cells. LO from DU145R80, compared to those from DU145, carried increased amounts of key-molecules involved in PCa progression including integrin alpha V (αV-integrin). By incubating DU145 cells with DU145R80-derived LO we demonstrated that αV-integrin on LO surface was functionally involved in the increased adhesion and invasion of recipient cells, via AKT. Indeed either the pre-incubation of LO with an αV-integrin blocking antibody, or a specific AKT inhibition in recipient cells are able to revert the LO-induced functional effects. Moreover, DU145R80-derived LO also increased DU145 tumor engraftment in a mice model. Finally, we identified αV-integrin positive LO-like structures in tumor xenografts as well as in PCa patient tissues. Increased αV-integrin tumor expression correlated with high Gleason score and lymph node status.ConclusionsOverall, this study is the first to demonstrate the critical role of αV-integrin positive LO in PCa aggressive features, adding new insights in biological function of these large EVs and suggesting their potential use as PCa prognostic markers.

Highlights

  • Molecular markers for prostate cancer (PCa) are required to improve the early definition of patient outcomes

  • Differently for what has been reported for Large Oncosomes” (LO) in the DU145 model [9, 10], the number of extracellular vesicles (EVs) > 1 μm in DU145R80 was not increased by treatment with 50 ng/mL epidermal growth factor (EGF) (Fig. 1d)

  • tunable resistive pulse sensing (TRPS) data showed that the number of large EVs in Large Oncosomes derived from DU145R80 cells (LOR80) was enriched in comparison to LO derived from either DU145 (LO145)

Read more

Summary

Introduction

Molecular markers for prostate cancer (PCa) are required to improve the early definition of patient outcomes. The validation of molecular markers able to refine the prognostic prediction of the Gleason score, which is highly imperfect but still the only tool to predict PCa aggressiveness, can improve the early definition of PCa patients clinical outcome, with implications for personalized therapies and follow-up strategies [2]. Both tumor invasion and metastasis are regulated by a complex mechanism finely controlled by the expression and function of adhesion molecules, such as integrins and proteolytic enzymes able to degrade the extracellular matrix (ECM), including metalloproteinases. We previously demonstrated that integrin alpha V (αVintegrin), which is linked to cancer progression in PCa and other tumors, was upregulated in DU145R80 cells and functionally involved in their increased invasive phenotype compared to parental DU145 cells [16, 17]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call