Abstract

The dissociation of pentane-2,4-dione radical cation has been studied by ab initio direct classical trajectory calculations at the MP2/6-31G(d) level of theory. A bond additivity correction has been used to improve the MP2 potential energy surface (BAC-MP2). A microcanonical ensemble was constructed using quasiclassical normal-mode sampling by distributing 10 kcal/mol of excess energy above ZPE for the transition state for the tautomerization of the enol with a terminal double bond, 4-hydroxypent-4-en-2-one radical cation, to the diketo form. A total of 244 trajectories were run starting from this transition state, yielding pentane-2,4-dione radical cation and depositing energy in the terminal CC bond. As a result, the branching ratio for dissociation of the terminal CC bond versus the interior CC bonds is significantly larger than expected from RRKM theory. The branching ratio for the dissociation of the two interior CC bonds is ∼20:1, with the one closest to the activated methyl breaking more often. Since the two interior bonds are equivalent and should dissociate with equal probability, this branching ratio represents a very large deviation from statistical behavior. A simple kinetic scheme has been constructed to model the dissociation rates. The nonstatistical behavior is seen because the rate of energy flow within the molecule is comparable to or less than the rates of dissociation for the activated system. In addition to the expected dissociation products, some of the trajectories also lead to the formation of an ester-like product, prop-1-en-2-yl acetate radical cation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call