Abstract

We develop a dimensional regularization approach to deal with the low-energy effects of the long-range Coulomb interaction in 1D electron systems. The method allows us to avoid the infrared singularities arising from the long-range Coulomb interaction at D=1, providing at the same time insight about the fixed-points of the theory. We show that the effect of increasing the number N of subbands at the Fermi level is opposite to that of approaching the bare Coulomb interaction in the limit D→1. Then, we devise a double scaling limit, in which the large N effects are able to tame the singularities due to the long-range interaction. Thus, regular expressions can be obtained for all observables right at D=1, bearing also a dependence on the doping level of the system. Our results imply a variation with N in the value of the exponent for the tunneling density of states, which is in fair agreement with that observed in different transport experiments involving carbon nanotubes. As the doping level is increased in nanotubes of large radius and multi-walled nanotubes, we predict a significant reduction of order N −1/2 in the critical exponent of the tunneling density of states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.