Abstract
Instruction-tuned large language models (LLMs) demonstrate exceptional ability to align with human intentions. We present an LLM-based model-instruction-tuned LLM for assessment of cancer (iLLMAC)-that can detect cancer using cell-free deoxyribonucleic acid (cfDNA) end-motif profiles. Developed on plasma cfDNA sequencing data from 1135 cancer patients and 1106 controls across three datasets, iLLMAC achieved area under the receiver operating curve (AUROC) of 0.866 [95% confidence interval (CI), 0.773-0.959] for cancer diagnosis and 0.924 (95% CI, 0.841-1.0) for hepatocellular carcinoma (HCC) detection using 16 end-motifs. Performance increased with more motifs, reaching 0.886 (95% CI, 0.794-0.977) and 0.956 (95% CI, 0.89-1.0) for cancer diagnosis and HCC detection, respectively, with 64 end-motifs. On an external-testing set, iLLMAC achieved AUROC of 0.912 (95% CI, 0.849-0.976) for cancer diagnosis and 0.938 (95% CI, 0.885-0.992) for HCC detection with 64 end-motifs, significantly outperforming benchmarked methods. Furthermore, iLLMAC achieved high classification performance on datasets with bisulfite and 5-hydroxymethylcytosine sequencing. Our study highlights the effectiveness of LLM-based instruction-tuning for cfDNA-based cancer detection.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have