Abstract
Autonomous vehicles (AVs) are anticipated to revolutionize future transportation, necessitating updates to traffic infrastructure, particularly parking facilities, due to the unique characteristics of AVs compared to Human-Driven Vehicles (HDVs). During the transition period in which AVs and HDVs coexist, adaptable infrastructure is essential to accommodate both vehicle types. Traditional research, typically reliant on complex mathematical models and simulations, faces challenges in adapting to diverse urban settings, requiring substantial time and resources. To address these challenges, a government-level framework was developed, enabling urban planners to quickly and accurately evaluate and optimize existing parking facilities for future AV and HDV coexistence scenarios. The framework integrates a Large Language Model (LLM) to enhance flexibility and efficiency in parking planning throughout the transitional period. Structured guidance is incorporated to enhance decision-making precision and reduce LLM hallucination risks. The flexibility, robustness, and accuracy of the framework were validated through step-by-step and end-to-end testing using real-world datasets. Specifically, the framework achieved 91.1 % comprehensiveness and 70.2 % consistency in Indicator Selection Module testing, a 68.9 % success rate in the Single Indicator Calculation Module, and a 66.7 % success rate in end-to-end testing, demonstrating its practical value in supporting cities during AV integration. Finally, the success rates of different LLM agent modules were further explored, along with a comparison of multiple LLMs and an analysis of key issues related to LLM trustworthiness in urban planning applications. The research highlights the potential of LLMs in advancing urban planning processes and optimizing existing infrastructure, contributing to smarter and more adaptable urban environments.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have