Abstract

Large-grain SiGe-crystal-on-insulator is essential for fabrication of devices such as advanced thin film transistors and/or photosensors. For these purposes, rapid-melting growth of amorphous SiGe stripes (7%–20% Si concentration) on insulating substrates is investigated over a wide range of cooling rates (from 2 to 17 °C/s). The growth features of SiGe change dynamically, depending on the cooling rate. A low cooling rate produces large crystals with laterally graded Si concentration profiles caused by significant Si segregation during solidification. In contrast, a high cooling rate suppresses the Si segregation, but small grains form because of high spontaneous nucleation under super-cooling conditions. By tuning of the cooling rate, moderate super-cooling conditions are obtained as a function of the Si concentration. This controls both the Si segregation and the spontaneous nucleation, and produces large SiGe crystals (∼400 μm length, 7%–20% Si concentration) with three-dimensionally uniform Si profiles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call