Abstract

We demonstrated ultrafast femtosecond nonlinear optical (NLO) absorption characteristics of bilayered fullerosome vesicle nanostructures derived from molecular self-assembly of amphiphilic oligo(ethylene glycolated) C(60)-(light-harvesting diphenylaminofluorene antenna). Fullerene conjugates were designed to enhance photoresponse in a femtosecond time scale by applying an isomerizable periconjugation linker between the C(60) cage and diphenylaminofluorene antenna subunit in an intramolecular contact distance of only < 3.0 Å. Morphology of C(60)(>DPAF-EG(12)C(1))-based fullerosome nanovesicles in H(2)O was characterized to consist of a bilayered shell with a sphere diameter of 20-70 nm and a chromophore shell-width of 9.0-10 nm, fitting well with a head-to-head packing configuration of the molecular length. At the estimated effective nanovesicle concentration as low as 5.5 × 10(-8) MV (molecular molar concentration of 5.0 × 10(-4) M) in H(2)O, two-photon absorption (2PA) phenomena were found to be the dominating photophysical events showing a large molar concentration-insensitive 2PA cross-section value equivalent to 8500 GM in a form of nanovesicles, on average. The observed NLO characteristics led to a sharp trend of efficient light-transmittance intensity reduction at the input laser intensity above 100 GW/cm(2).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call