Abstract
Observing light-by-light scattering at the large hadron collider (LHC) has received quite some attention and it is believed to be a clean and sensitive channel to possible new physics. In this paper, we study the diphoton production at the LHC via the process \({{pp}}\rightarrow {{p}}\gamma \gamma {{p}}\rightarrow {{p}}\gamma \gamma {{p}}\) through graviton exchange in the large extra dimension (LED) model. Typically, when we do the background analysis, we also study the double Pomeron exchange of \(\gamma \gamma \) production. We compare its production in the quark–quark collision mode to the gluon–gluon collision mode and find that contributions from the gluon–gluon collision mode are comparable to the quark–quark one. Our result shows, for extra dimension \(\delta =4\), with an integrated luminosity \(\mathcal{L} = 200\,\mathrm{fb}^{-1}\) at the 14 TeV LHC, that diphoton production through graviton exchange can probe the LED effects up to the scale \({M}_{S}=5.06 (4.51, 5.11)\,\mathrm{TeV}\) for the forward detector acceptance \(\xi _1 (\xi _2, \xi _3)\), respectively, where \(0.0015<\xi _1<0.5\), \(0.1<\xi _2<0.5\), and \(0.0015<\xi _3<0.15\).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.