Abstract

Adsorption of eight organic molecules (acetone, acetonitrile, ammonia, benzene, methane, methanol, ethanol, and toluene) onto silicene has been investigated using van der Waals density functional theory calculations (DFT-D). The calculated values of the adsorption energies vary from $-0.11$ eV to $-0.95$ eV. Quantitatively, these values are higher than the corresponding adsorption energies of the molecules adsorbed on graphene. In addition, electronic structure calculations have been performed. The obtained values of the band gap range from 0.006 eV to 0.35 eV for acetonitrile to acetone, respectively. Furthermore, the effective mass of the electron is estimated and found to be comparatively small, which is expected to result in high electron mobility. In addition, we study the effect of Li atoms doped in pristine and acetone adsorbed silicene. In particular, we focus on the variation of the adsorption energy with respect to the number of Li atoms in the systems. Our results suggest new approaches for the use of silicene molecular-based energy storage and conversion as well as electronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.