Abstract
Worldwide, many commercial fish stocks have experienced dramatic declines due to overfishing. Such fisheries-induced population reductions could potentially erode the genetic diversity of marine fish populations. Based on analyses of DNA extracted from archived and contemporary samples, this paper compares the genetic variability at nine microsatellite loci in a Canadian population of Atlantic cod ( Gadus morhua ) over 80 years, spanning from before the fishery intensified to now when the population is at historically low abundance. Extensively validated genetic data from the temporally spaced samples were used to estimate the effective population size. Over the period, we observed no loss of either heterozygosity or allelic diversity. Several of the estimation methods applied could not distinguish the effective population size from infinity, and the lower 95% confidence limit on estimates was generally >500, suggesting that the effective population size is probably considerably larger than this. Hence, it appears that the southern Gulf of St. Lawrence cod stock has maintained genetic variability to sustain future evolution despite a dramatic population decline.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Canadian Journal of Fisheries and Aquatic Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.