Abstract

Computational fluid dynamics are applied to simulate the smoke movement in a ventilated tunnel fire through large eddy simulation (LES). Several scenarios with different ventilation rates are considered by taking the fire as a volumetric heat source. Results predicted by LES are compared with those from a turbulent kinetic energy; thermal conductivity-dissipation of the turbulent kinetic energy model. These include temperature fields, flame shape and the smoke movement pattern. It is found that thermal stratification and smoke backflow can be predicted successfully by LES. The possibility of applying LES as an engineering tool to smoke management system design in tunnels is discussed. (A) Reprinted with permission from Elsevier.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call