Abstract

Traditional tunnel lining strength detection techniques are mostly contact-based, with relatively low detection efficiency. This study innovatively proposes hyperspectral imaging method to rapidly detect tunnel concrete lining strength from a machine vision perspective. Hyperspectral cameras were employed in indoor experiments to capture hyperspectral images of concrete specimens with different compressive strength levels. The differences of concrete strength based on hyperspectral reflectance characteristics were analysed using hyperspectral images and machine learning algorithms. Firstly, the K-Nearest Neighbors (KNN) classification algorithm was used to predict the classification of the concrete hyperspectral dataset with accuracy mostly exceeding 90 %. The results indicate distinctive differences in hyperspectral reflectance characteristics among concrete specimens. Furthermore, compressive strength prediction of different concrete specimens was carried out using Principal component regression (PCR), Partial least squares regression (PLSR), and Least Squares Support Vector Machine (LSSVM) machine learning models on both original and Savitzky-Golay(S-G) processed spectral data. LSSVM and PLSR models performed excellently in the visible light spectrums(400–1000 nm), with LSSVM excelling in the near-infrared spectrums(900–1700 nm). Finally, the feasibility of using Hyperspectral imaging(HSI) technology to detect tunnel lining strength was demonstrated at the shield tunnel model site. The predicted results were validated by combining with strength values measured by the rebound hammer, and presented promoising research path for automated non-destructive detection of concrete tunnel lining strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.