Abstract

Abstract The characteristics of wind profiles in a neutral atmospheric boundary layer and their dependence on the geostrophic wind speed Ug, Coriolis parameter f, and surface roughness length z0 are examined utilizing large-eddy simulations. These simulations produce a constant momentum flux layer and a log-law layer above the surface characterized by a logarithmic increase of wind speed with height. The von Kármán constant derived from the mean wind profile is around 0.4 over a wide range of control parameters. The depths of the simulated boundary layer, constant-flux layer, and surface log-law layer tend to increase with the wind speed and decrease with an increasing Coriolis parameter. Immediately above the surface log-law layer, a second log-law layer has been identified from these simulations. The depth of this upper log-law layer is comparable to its counterpart in the surface layer, and the wind speed can be scaled as , as opposed to just in the surface log-law layer, implying that in addition to surface processes, the upper log-law layer is also influenced by Earth’s rotation and large-scale conditions. Here is the friction velocity at the surface, and h is the boundary layer depth. An analytical model is proposed to assist in the interpretation of the log laws in a typical Ekman boundary layer. The physics and implications of the upper log-law layer are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call