Abstract
We present 3D numerical results on tri-fuel (TF) combustion using large-eddy simulation and finite rate chemistry. The TF concept was recently introduced by Karimkashi et al. (Int. J. Hydrogen Energy, 2020) in 0D. Here, the focus is on spray-assisted ignition of methane–hydrogen blends. The spray acts as a high-reactivity fuel (HRF) while the ambient premixed methane-hydrogen blend acts as a low-reactivity fuel (LRF) mixture. Better understanding on such a TF process could enable and motivate more extensive hydrogen usage in e.g. compression ignition marine engines where spray-assisted dual-fuel (DF) combustion is already utilised. The studied spray set-up is based on the modified ECN Spray A case, see Kahila et al. (Combustion and Flame, 2019) for DF combustion. The ambient pressure and temperature are 900 K and 60 bar. The hydrogen content of the LRF blend is varied systematically by changing the molar fraction , . The main added value of the study is that we extend the TF concept to 3D. The particular findings of the study are as follows: 1) Consistent with Karimkashi et al. 2020, hydrogen delays ignition also in 3D and the effect becomes significant for . 2) The ratio between the first- and second-stage ignition delay times and . Furthermore, the ratio between 3D and 0D ignition delay times is given as for all TF cases. 3) Finally, consistent with Karimkashi et al. 2020, also in 3D the high-temperature combustion heat release mode is shown to appear stronger in TF than the low-temperature combustion mode compared to DF methane–diesel combustion.
Highlights
This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form
M or e o v er, gri ds ar e s el e ct e d wit h r el ati veimp ort a n c e of i g niti o n s e nsiti vit yinthe diff er e nt
Summary
This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have