Abstract

This study represents an attempt to apply Large‐Eddy Simulation (LES) resolution to simulate deep tropical convection in near equilibrium for 24 hours over an area of about 205 × 205 km2, which is comparable to that of a typical horizontal grid cell in a global climate model. The simulation is driven by large‐scale thermodynamic tendencies derived from mean conditions during the GATE Phase III field experiment. The LES uses 2048 × 2048 × 256 grid points with horizontal grid spacing of 100 m and vertical grid spacing ranging from 50 m in the boundary layer to 100 m in the free troposphere. The simulation reaches a near equilibrium deep convection regime in 12 hours. The simulated vertical cloud distribution exhibits a tri‐modal vertical distribution of deep, middle and shallow clouds similar to that often observed in Tropics. A sensitivity experiment in which cold pools are suppressed by switching off the evaporation of precipitation results in much lower amounts of shallow and congestus clouds. Unlike the benchmark LES where the new deep clouds tend to appear along the edges of spreading cold pools, the deep clouds in the no‐cold‐pool experiment tend to reappear at the sites of the previous deep clouds and tend to be surrounded by extensive areas of sporadic shallow clouds. The vertical velocity statistics of updraft and downdraft cores below 6 km height are compared to aircraft observations made during GATE. The comparison shows generally good agreement, and strongly suggests that the LES simulation can be used as a benchmark to represent the dynamics of tropical deep convection on scales ranging from large turbulent eddies to mesoscale convective systems. The effect of horizontal grid resolution is examined by running the same case with progressively larger grid sizes of 200, 400, 800, and 1600 m. These runs show a reasonable agreement with the benchmark LES in statistics such as convective available potential energy, convective inhibition, cloud fraction, precipitation rates, and surface latent and sensible fluxes. All runs reveal a tri‐model cloud distribution in the vertical. However, there are differences in the updraft‐core cloud statistics, and convergence of statistical properties is found only between the LES benchmark and the run with 200 m grid size. The effect of vertical grid resolution is also investigated with another run that uses a typical cloud‐resolving model (CRM) horizontal grid size on the order of 1 km and only 64 vertical levels. A comparison to the run with 256 vertical levels shows different vertical cloud distributions. It is concluded that representation of the often observed tri‐modal vertical distribution of clouds requires a vertical grid spacing in the range of 50‐100 m in mid‐to‐low troposphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call