Abstract

In the present study, the prediction accuracy of a dynamic one-equation sub-grid scale model for the large eddy simulation of dispersion around an isolated cubic building is investigated. For this purpose, the localized dynamic \(k_\mathrm{SGS} \)-equation model (LDKM) is employed and the results are compared with the available experimental data and two other classic sub-grid scale models, namely, standard Smagorinsky–Lilly model (SSLM) and dynamic Smagorinsky–Lilly model (DSLM). It is shown that the three SGS models give results in good agreement with experiment. However, near the ground level of the leeward wall, dimensionless time-averaged concentration, \(\langle K\rangle \), profile is not quite similar to the experimental data. It is also demonstrated that the LDKM predicts the values of \(\langle K\rangle \) on the roof, leeward and side walls more acceptably than the SSLM and DSLM. Whereas, the streamwise elongation of time-averaged structures of the plume shape is more over-estimated with the LDKM than with the other two SGS models. In terms of numerical difficulty, the LDKM is found to be stable and computationally reasonable. In addition, it does not suffer from a flow dependent constant such as the Smagorinsky coefficient employed in the SSLM model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call