Abstract

A recently developed dynamic surface roughness model (Anderson and Meneveau, J Fluid Mech 679:288–314, 2011) for large-eddy simulation (LES) of atmospheric boundary-layer flow over multi-scale topographies is applied to boundary-layer flow over several types of fluvial-like landscapes. The landscapes are generated numerically with simulation of a modified Kardar–Parisi–Zhang equation (Passalacqua et al., Water Resour Res 42:WOD611, 2006). These surfaces possess the fractal-like channel network and anisotropic features often found in real terrains. The dynamic model is shown to lead to accurate flow predictions when the surface-height distributions exhibit power-law scaling (scale invariance) in the prevalent mean flow direction. In those cases, the LES provide accurate predictions (invariant to resolution) of mean velocity profiles. Conversely, some resolution dependence is found for applications in which the landscape’s streamwise spectra do not exhibit pure power-law scaling near wavenumbers corresponding to the LES grid resolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call